
Priority Queues and Binary
Heaps

See Chapter 21 of the text, pages 807-839.

A “full” binary tree of height H has every possible
node with height up to H. Here is a full tree of
height 3:

Here is a full tree of height 2. It has 7
nodes including 4 leaves.

Here is a full tree of height 1; it has 3
nodes, 2 of which are leaves.

Our first slide had a full tree of height 3. It has 15 nodes, 8
of which are leaves

Height 1 2 3
Nodes 3 7 15

What is a formula for the number of nodes in a full
binary tree of height H?

A. N = 2*H+1
B. N = 2H + 1
C. N = 2H+1- 1
D. I don’t do formulas

Answer C: The number of nodes in a full binary tree
of height H is N = 2H+1- 1

Height 1 2 3
Leaves 2 4 8

What is a formula for the number of leaves in a full
binary tree of height H?

A. N = 2*H
B. N = 2H + 1
C. N = 2H+1- 1
D. N = 2H

Answer D: A full binary tree of height H has 2H+1- 1
nodes, of which 2H are leaves. Over half of the
nodes are leaves!

A Heap of height H is a full binary tree of height H-1
(with 2H-1 nodes) plus anywhere from 1 to 2H leaves
on the bottom row. This means that a heap of
height H has between 2H and 2H+1-1 nodes.

So 2H <= N < 2H+1

If we take base-2 logarithms of everything this says
H <= log(N) < H+1

So the height of a heap with N nodes is essentially
log(N).

We insert a node into a heap by putting it as a
leaf and letting it bubble up towards the root;
the number of steps is bounded by the height
of the tree, so this is a O(log(n)) operation.
We remove the smallest value by replacing it
with a leaf and letting it percolate down. Again
the number of steps is bounded by the height
of the tree, and deleteMin() is also a O(log(n))
operation.

Here is something surprising and cool. We can turn
an array into a heap in linear time! We start at the
leaves and work our way up. Of course, there is
nothing to do at the leaves, they are already
heaps. When we get to a node we will have
already turned its leaves into heaps, so all that we
need to do is to percolate the value at the node
downward:

void buildHeap() {
for (int i = size/2; i > 0; i--)

percolateDown(i);
}

At each node we call percolateDown(), so
buildHeap() is bounded by the sum of the heights of
all of the nodes in the tree.

Theorem: In a full binary tree of height H (containing
N = 2H+1-1 nodes) the sum of the heights of all nodes
is N-H-1.
Proof: Weiss gives (p. 821) an edge-coloring proof.
Here is a more analytical one. There are 2H leaves of
such a tree; these have height 0. The row above this
has 2H-1 nodes of height 1. Above this there are 2H-2

nodes of height 2, and so forth.

The sum of the heights of all of the nodes is
S = 1.2H-1 + 2.2H-2 + 3.2H-3 + 4.2H-4 + 5.2H-5+...+H.20

If we double this we get a similar sum:

2S = 1.2H + 2.2H-1 + 3.2H-2 + 4.2H-3 + 5.2H-4+...+H.21

Now subtract these:

2S - S = 2H + 2H-1 + 2H-2 + 2H-3 + + 21 - H.20

The left side is just S, the right side is a geometric sequence
that we know how to sum:

S = 2H+1 - 2 - H
= N-1-H

A heap is not necessarily a full tree but it is a
full tree of height H-1 with some additional
leaves of depth H; we can derive a similar
O(N) bound for any heap.

This means that we can construct a heap out
of any array of n elements in time O(n).

While we are talking about heaps there is one more
important application of them. One of the
sweetest sorting algorithms is built on our
percolateDown() method. This is called HeapSort.
It sorts an array of size n in time O(n*log(n)) and
uses no additional storage.

HeapSort requires a few changes in the way we
think of heaps:
A. We need the heap to find maximum values

rather than minimum values.
B. We need to put the root at index 0 rather than

index 1.

We have said before that we can use Priority
Queues to find maxima by flipping the comparator,
but it is confusing for the priority queue to use a
different comparator than the sort so instead we
change the percolate algorithms to percolate until
each node has a value at least as large as its
children.

What is our indexing scheme if the root is at index
0?

35

20 25

12 11

8 5

18 20

35 20 25 12 11 18 20 8 5

1

0

2

3 4 5 6

7 8

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

35

20 25

12 11

8 5

18 20

1

0

2

3 4 5 6

7 8

The children of the node at index j are at indices
2*j+1 and 2*j+2. The parent of the node at index j
is at index (j-1)/2.

The idea behind HeapSort is really simple. We
first make the array into a Heap, which only
takes time O(n). We then go into a loop that
pulls off the root and puts it at the end of the
array, and reduce the size of the heap by 1 so
we don't consider this element part of the
heap any more. We switch a leaf with the
root and let this percolate down, rebuilding
the array. The percolate operation takes time
O (log(n)) and we do it n times, so this is
O(n*log(n)).

Since this is a slightly different heap construction, I'll rename
the percolate method to percDown(). It takes 3 arguments:
the array, the index at which to start percolating, and the
current size of the heap.

Here is the HeapSort algorithm in terms of percDown():

public static <E extends Comparable <? super E>> void HeapSort(E[] a) {
// build the heap
for (int i = a.length/2 -1; i >= 0; i--)

percDown(a, i, a.length);

//sort
for (int i = a.length-1; i > 0; i--) {

swap(a, 0, i); // put the max of heap ai position i
// and the last leaf at the root

percDown(a, 0, i);
}

}

The next slide has the code for the new
percDown(), which works with maxHeaps. This
is a line-by-line translation of percolateDown(),
reversing the inequalities and starting the
indexing at 0 rather than 1:

public static <E extends Comparable <? super E>> void percDown(E[] a,int hole,int size) {
E value = a[hole];
while (2*hole+1 <size) {

int bigChild;
int child1 = 2*hole+1;
int child2 = 2*hole+2;
if (child1 == size-1)

bigChild = size-1;
else {

if (a[child1].compareTo(a[child2]) > 0)
bigChild = child1;

else
bigChild = child2;

}
if (value.compareTo(a[bigChild]) > 0)

break;
else {

a[hole] = a[bigChild];
hole = bigChild;

}
}
a[hole] = value;

}

